当前位置:在线查询网 > 在线百科全书查询 > 等腰直角三角形

等腰直角三角形_在线百科全书查询


请输入要查询的词条内容:

等腰直角三角形


等腰直角三角形是一种特殊的三角形,具有所有三角形的性质:稳定性,两直角边相等 直角边夹亦直角锐角45,斜边上中线角平分线垂线 三线合一,等腰直角三角形斜边上的高为外接圆的半径R,那么设内切圆的半径r为1,则外接圆的半径R就为(根号2加1),所以r:R=1:(根号2加1)。



关系


等腰直角三角形的边角之间的关系 :

(1)三角形三内角和等于180;

(2)三角形的一个外角等于和它不相邻的两个内角之和;

(3)三角形的一个外角大于任何一个和它不相邻的内角;

(4)三角形两边之和大于第三边,两边之差小于第三边;

(5)在同一个三角形内,大边对大角,大角对大边.

等腰直角三角形中的四条特殊的线段:角平分线,中线,高,中位线.

(1)三角形的角平分线的交点叫做三角形的内心,它是三角形内切圆的圆心,它到各边的距离相等.

(三角形的外接圆圆心,即外心,是三角形三边的垂直平分线的交点,它到三个顶点的距离相等).

(2)三角形的三条中线的交点叫三角形的重心,它到每个顶点的距离等于它到对边中点的距离的2倍。

(3)三角形的三条高的交点叫做三角形的垂心。

(4)三角形的中位线平行于第三边且等于第三边的二分之一。

注意!①三角形的内心、重心都在三角形的内部 .②钝角三角形垂心、外心在三角形外部。

③直角三角形垂心、外心在三角形的边上。(直角三角形的垂心为直角顶点,外心为斜边

中点。)④锐角三角形垂心、外心在三角形内部。

三角形中的线段


中线:顶点与对边中点的连线,平分三角形。

:顶点到对边垂足的连线。

角平分线;顶点到两边距离相等的点所构成的直线。

中位线:任意两边中点的连线。

性质


等边三角形的性质:(具有等腰三角形的所有性质,结合定义更特殊)

1)等边三角形的内角都相等,且为60度 。

2)等边三角形每条边上的中线、高线和所对角的平分线互相重合(三线合一) 。

3)等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线或所对角的平分线所在直线 。

等边三角形的判定:(首先考虑判断三角形是等腰三角形)

(1)三边相等的三角形是等边三角形(定义)

(2)三个内角都相等的三角形是等边三角形

(3)有一个角是60度的等腰三角形是等边三角形

理解等边三角形的性质与判定。

首先明确等边三角形定义。三边相等的三角形叫做等边三角形,也称正三角形。

其次明确等边三角形与等腰三角形的关系。等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形。

推论1:三个角都相等的三角形是等边三角形

推论2:有一个角等于60的等腰三角形是等边三角形

等边三角形重心、内心 、外心、垂心重合,称为等边三角形的中心。

等边三角形的中心、内心和垂心重合于一点。(三心合一)

等边三角形的每条边上的中线、高或对角平分线重合。(三线合一)

等边三角形的复数性质

A,B,C三点的复数构成正三角形

等价于 A+wB+wwC=0

其中

w=cos(2π/3)+isin(2π/3)

1+w+ww=0

生活中的三角形物品


雨伞、帽子、彩旗、灯罩、风帆、小亭子、雪山、楼顶、切成三角形的西瓜、火炬冰淇淋、热带鱼的边缘线、蝴蝶翅膀、火箭、竹笋、宝塔、金字塔、三角内裤、机器上用的三角铁、某些路标、长江三角洲、斜拉桥等。

解三角形


在三角形ABC中,角A,B,C的对边分别为a,b,c. 则有

(1)正弦定理

a/SinA=b/SinB= c/SinC=2r (外接圆半径为r)

(2)余弦定理。

a^2=b^2+c^2-2bc*CosA cosA=c^2+b^2-a^2/2cb

b^2=a^2+c^2-2ac*CosB cosB=a^2+c^2-b^2/2ac

c^2=a^2+b^2-2ab*CosC cosC=a^2+b^2-c^2/2ab

勾股定理


如果直角三角形两直角边分别为A,B,斜边为C,那么 A^2+B^2=C^2;; 即直角三角形两直角边长的平方和等于斜边长的平方。如果三角形的三条边A,B,C满足A^2+B^2=C^2;,还有变形公式:AB=根号(AC^2+BC^2),如:一条直角边是a,另一条直角边是b,如果a的平方与b的平方和等于斜边c的平方那么这个三角形是直角三角形。(称勾股定理的逆定理)

勾股定理的多种证明方法


证法1

作四个全等的直角三角形,设它们的两条直角边长分别为a、b ,斜边长为c. 把它们拼成如图那样的一个多边形,使D、E、F在一条直线上. 过点C作AC的延长线交DF于点P.

∵ D、E、F在一条直线上, 且RtΔGEF ≌ RtΔEBD,

∴ ∠EGF = ∠BED,

∵ ∠EGF + ∠GEF = 90,

∴ ∠BED + ∠GEF = 90,

∴ ∠BEG =180―90= 90

又∵ AB = BE = EG = GA = c,

∴ ABEG是一个边长为c的正方形.

∴ ∠ABC + ∠CBE = 90

∵ RtΔABC ≌ RtΔEBD,

∴ ∠ABC = ∠EBD.

∴ ∠EBD + ∠CBE = 90

即 ∠CBD= 90

又∵ ∠BDE = 90,∠BCP = 90,

BC = BD = a.

∴ BDPC是一个边长为a的正方形. 同理,HPFG是一个边长为b的正方形.

设多边形GHCBE的面积为S,则

a^2+b^2=c^2

证法2

作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a) ,斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形,使E、A、C三点在一条直线上.

过点Q作QP∥BC,交AC于点P.

过点B作BM⊥PQ,垂足为M;再过点

F作FN⊥PQ,垂足为N.

∵ ∠BCA = 90,QP∥BC,

∴ ∠MPC = 90,

∵ BM⊥PQ,

∴ ∠BMP = 90,

∴ BCPM是一个矩形,即∠MBC = 90.

∵ ∠QBM + ∠MBA = ∠QBA = 90,

∠ABC + ∠MBA = ∠MBC = 90,

∴ ∠QBM = ∠ABC,

又∵ ∠BMP = 90,∠BCA = 90,BQ = BA = c,

∴ RtΔBMQ ≌ RtΔBCA.

同理可证RtΔQNF ≌ RtΔAEF.即a^2+b^2=c^2

证法3

作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a) ,斜边长为c. 再作一个边长为c的正方形. 把它们拼成如图所示的多边形.

分别以CF,AE为边长做正方形FCJI和AEIG,

∵EF=DF-DE=b-a,EI=b,

∴FI=a,

∴G,I,J在同一直线上,

∵CJ=CF=a,CB=CD=c,

∠CJB = ∠CFD = 90,

∴RtΔCJB ≌ RtΔCFD ,

同理,RtΔABG ≌ RtΔADE,

∴RtΔCJB ≌ RtΔCFD ≌ RtΔABG ≌ RtΔADE

∴∠ABG = ∠BCJ,

∵∠BCJ +∠CBJ= 90,

∴∠ABG +∠CBJ= 90,

∵∠ABC= 90,

∴G,B,I,J在同一直线上,

a^2+b^2=c^2

证法4

作三个边长分别为a、b、c的三角形,把它们拼成如图所示形状,使H、C、B三点在一条直线上,连结

BF、CD. 过C作CL⊥DE,

交AB于点M,交DE于点L.

∵ AF = AC,AB = AD,

∠FAB = ∠GAD,

∴ ΔFAB ≌ ΔGAD,

∵ ΔFAB的面积等于,

ΔGAD的面积等于矩形ADLM

的面积的一半,

∴ 矩形ADLM的面积 =.

同理可证,矩形MLEB的面积 =.

∵ 正方形ADEB的面积

= 矩形ADLM的面积 + 矩形MLEB的面积

∴ 即a^2+b^2=c^2

证法5(欧几里得的证法)

《几何原本》中的证明

在欧几里得的《几何原本》一书中提出勾股定理由以下证明后可成立。 设△ABC为一直角三角形,其中A为直角。从A点划一直线至对边,使其垂直于对边上的正方形。此线把对边上的正方形一分为二,其面积分别与其余两个正方形相等。

在正式的证明中,我们需要四个辅助定理如下:

如果两个三角形有两组对应边和这两组边所夹的角相等,则两三角形全等。(SAS定理) 三角形面积是任一同底同高之平行四边形面积的一半。 任意一个正方形的面积等于其二边长的乘积。 任意一个四方形的面积等于其二边长的乘积(据辅助定理3)。 证明的概念为:把上方的两个正方形转换成两个同等面积的平行四边形,再旋转并转换成下方的两个同等面积的长方形。

其证明如下:

设△ABC为一直角三角形,其直角为CAB。 其边为BC、AB、和CA,依序绘成四方形CBDE、BAGF和ACIH。 画出过点A之BD、CE的平行线。此线将分别与BC和DE直角相交于K、L。 分别连接CF、AD,形成两个三角形BCF、BDA。 ∠CAB和∠BAG都是直角,因此C、A 和 G 都是线性对应的,同理可证B、A和H。 ∠CBD和∠FBA皆为直角,所以∠ABD等于∠FBC。 因为 AB 和 BD 分别等于 FB 和 BC,所以△ABD 必须相等于△FBC。 因为 A 与 K 和 L是线性对应的,所以四方形 BDLK 必须二倍面积于△ABD。 因为C、A和G有共同线性,所以正方形BAGF必须二倍面积于△FBC。 因此四边形 BDLK 必须有相同的面积 BAGF = AB^2。 同理可证,四边形 CKLE 必须有相同的面积 ACIH = AC^2。 把这两个结果相加, AB^2+ AC^2; = BD×BK + KL×KC 。由于BD=KL,BD×BK + KL×KC = BD(BK + KC) = BD×BC 由于CBDE是个正方形,因此AB^2 + AC^2= BC^2。 此证明是于欧几里得《几何原本》一书第1.47节所提出的

证法6(欧几里德(Euclid)射影定理证法)

如图1,Rt△ABC中,∠ABC=90,BD是斜边AC上的高,通过证明三角形相似则有射影定理如下:

1)(BD)^2;=ADDC, (2)(AB)^2;=ADAC , (3)(BC)^2;=CDAC 。

由公式(2)+(3)得:

(AB)^2;+(BC)^2;=ADAC+CDAC =(AD+CD)AC=(AC)^2;,

即 (AB)^2;+(BC)^2;=(AC)^2,这就是勾股定理的结论。

证法七(赵爽弦图)

在这幅“勾股圆方图”中,以弦为边长得到正方形ABDE是由4个相等的直角三角形再加上中间的那个小正方形组成的。每个直角三角形的面积为ab/2;中间懂得小正方形边长为b-a,则面积为(b-a)2。于是便可得如下的式子:

4×(ab/2)+(b-a)2=c2

化简后便可得:

a2+b2=c2

亦即:

c=(a2+b2)(1/2)

勾股定理,是几何学中一颗光彩夺目的明珠,被称为“几何学的基石”,而且在高等数学和其他学科中也有着极为广泛的应用。正因为这样,世界上几个文明古国都已发现并且进行了广泛深入的研究,因此有许多名称。

我国是发现和研究勾股定理最古老的国家之一。我国古代数学家称直角三角形为勾股形,较短的直角边称为勾,另一直角边称为股,斜边称为弦,所以勾股定理也称为勾股弦定理。在公元前1000多年,据记载,商高(约公元前1120年)答周公曰“故折矩,以为句广三,股修四,径隅五。既方之,外半其一矩,环而共盘,得成三四五。两矩共长二十有五,是谓积矩。”因此,勾股定理在我国又称“商高定理”。在公元前7至6世纪一中国学者陈子,曾经给出过任意直角三角形的三边关系即“以日下为勾,日高为股,勾、股各乘并开方除之得邪至日。

在法国和比利时,勾股定理又叫“驴桥定理”。还有的国家称勾股定理为“平方定理”。

在陈子后一二百年,希腊的著名数学家毕达哥拉斯发现了这个定理,因此世界上许多国家都称勾股定理为“毕达哥拉斯”定理。为了庆祝这一定理的发现,毕达哥拉斯学派杀了一百头牛酬谢供奉神灵,因此这个定理又有人叫做“百牛定理”.前任美国第二十届总统伽菲尔德证明了勾股定理(1876年4月1日)。

1 周髀算经, 文物出版社,1980年3月, 据宋代嘉定六年本影印,1-5页。

2. 陈良佐: 周髀算经勾股定理的证明与出入相补原理的关系. 刊於《汉学研究》, 1989年第7卷第1期, 255-281页。

3. 李国伟: 论「周髀算经」“商高曰数之法出于圆方”章. 刊於《第二届科学史研讨会汇刊》, 台湾, 1991年7月, 227-234页。

4. 李继闵: 商高定理辨证. 刊於《自然科学史研究》,1993年第12卷第1期,29-41页 。

5. 曲安京: 商高、赵爽与刘徽关於勾股定理的证明. 刊於《数学传播》20卷, 台湾, 1996年9月第3期, 20-27页

证法8(达芬奇的证法)

达芬奇的证法

三张纸片其实是同一张纸,把它撕开重新拼凑之后,中间那个“洞”的面积前后仍然是一样的,但是面积的表达式却不再相同,让这两个形式不同的表达式相等,就能得出一个新的关系式——勾股定理,所有勾股定理的证明方法都有这么个共同点。观察纸片一,因为要证的事勾股定理,那么容易知道EB⊥CF,又因为纸片的两边是对称的,所以能够知道四边形ABOF和CDEO都是正方形。然后需要知道的是角A''和角D''都是直角,原因嘛,可以看纸片一,连结AD,因为对称的缘故,所以∠BAD=∠FAD=∠CDA=∠EDA=45,那么很明显,图三中角A''和角D''都是直角。证明:第一张纸片多边形ABCDEF的面积S1=S正方形ABOF+S正方形CDEO+2S△BCO=OF^2+OE^2+OFOE 第三张纸片中多边形A''B''C''D''E''F''的面积S2=S正方形B''C''E''F''+2△C''D''E''=E''F''^2+C''D''D''E''因为S1=S2 所以OF^2+OE^2+OFOE=E''F''^2+C''D''D''E''又因为C''D''=CD=OE,D''E''=AF=OF所以OFOE=C''D''D''E'' 则OF^2+OE^2=E''F''^2因为E''F''=EF所以OF^2+OE^2=EF^2勾股定理得证

定理:


如果直角三角形两直角边分别为a,b,斜边为c,那么 a^2+b^2=c^2; 即直角三角形两直角边的平方和等于斜边的平方。 如果三角形的三条边a,b,c满足a^2+b^2=c^2,如:一条直角边是3,一条直角边是4,斜边就是3×3+4×4=X×X,X=5。那么这个三角形是直角三角形。(称勾股定理的逆定理)

三角形相关定理


重心定理

三角形的三条中线交于一点,这点到顶点的距离是它到对边中点距离的2倍.

上述交点叫做三角形的重心.

外心定理

三角形的三边的垂直平分线交于一点.

这点叫做三角形的外心.

垂心定理

三角形的三条高交于一点.

这点叫做三角形的垂心.

内心定理

三角形的三内角平分线交于一点.

这点叫做三角形的内心.

旁心定理

三角形一内角平分线和另外两顶点处的外角平分线交于一点.

这点叫做三角形的旁心.三角形有三个旁心.

三角形的重心、外心、垂心、内心、旁心称为三角形的五心.

它们都是三角形的重要相关点.

中位线定理

三角形的中位线平行于第三边且等于第三边的一半.

三边关系定理

三角形任意两边之和大于第三边,任意两边之差小于第三边.

三角形面积计算公式

S(面积)=a(边长)h(高)/2---三角形面积等于一边与这边上的高的积的一半

梅涅劳斯定理


梅涅劳斯(Menelaus)定理是由古希腊数学家梅涅劳斯首先证明的。它指出:如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么(AF/FB)×(BD/DC)×(CE/EA)=1。

证明:

过点A作AG∥BC交DF的延长线于G,

则AF/FB=AG/BD , BD/DC=BD/DC , CE/EA=DC/AG。

三式相乘得:AF/FB×BD/DC×CE/EA=AG/BD×BD/DC×DC/AG=1

它的逆定理也成立:若有三点F、D、E分别在的边AB、BC、CA或其延长线上,且满足(AF/FB)×(BD/DC)×(CE/EA)=1,则F、D、E三点共线。利用这个逆定理,可以判断三点共线。

另外,有很多人会觉得书写这个公式十分烦琐,不看书根本记不住,下面从别人转来一些方法帮助书写

为了说明问题,并给大家一个深刻印象,我们假定图中的A、B、C、D、E、F是六个旅游景点,各景点之间有公路相连。我们乘直升机飞到这些景点的上空,然后选择其中的任意一个景点降落。我们换乘汽车沿公路去每一个景点游玩,最后回到出发点,直升机就停在那里等待我们回去。

我们不必考虑怎样走路程最短,只要求必须“游历”了所有的景点。只“路过”而不停留观赏的景点,不能算是“游历”。

例如直升机降落在A点,我们从A点出发,“游历”了其它五个字母所代表的景点后,最终还要回到出发点A。

另外还有一个要求,就是同一直线上的三个景点,必须连续游过之后,才能变更到其它直线上的景点。

从A点出发的旅游方案共有四种,下面逐一说明:

方案 ① ——从A经过B(不停留)到F(停留),再返回B(停留),再到D(停留),之后经过B(不停留)到C(停留),再到E(停留),最后从E经过C(不停留)回到出发点A。

按照这个方案,可以写出关系式:

(AF:FB)*(BD:DC)*(CE:EA)=1。

现在,您知道应该怎样写“梅涅劳斯定理”的公式了吧。

从A点出发的旅游方案还有:

方案 ② ——可以简记为:A→B→F→D→E→C→A,由此可写出以下公式:

(AB:BF)*(FD:DE)*(EC:CA)=1。从A出发还可以向“C”方向走,于是有:

方案 ③ —— A→C→E→D→F→B→A,由此可写出公式:

(AC:CE)*(ED:DF)*(FB:BA)=1。 从A出发还有最后一个方案:

方案 ④ —— A→E→C→D→B→F→A,由此写出公式:

(AE:EC)*(CD:DB)*(BF:FA)=1。

我们的直升机还可以选择在B、C、D、E、F任一点降落,因此就有了图中的另外一些公式。

值得注意的是,有些公式中包含了四项因式,而不是“梅涅劳斯定理”中的三项。当直升机降落在B点时,就会有四项因式。而在C点和F点,既会有三项的公式,也会有四项的公式。公式为四项时,有的景点会游览了两次。

不知道梅涅劳斯当年是否也是这样想的,只是列出了一两个典型的公式给我们看看。

现在是否可以说,我们对梅涅劳斯定理有了更深刻的了解呢。那些复杂的相除相乘的关系式,不会再写错或是记不住吧。

特殊的等腰直角三角形


证明在所有斜边相等的RT△中,面积和周长最大的都是等腰RT三角形

解:首先证明面积最大的是它

辅助线:将等腰RT△ACB,任意RT△AC''B都画出外接圆,AB为圆的直径.(其实这样做是为了满足斜边AB相等,且是RT△).再做CF⊥AB,C''F⊥AB.(蓝色辅助线)

∵在半圆中,弧AB上取一点做AB垂线,可知垂线最长的就是CO(F),即圆的半径.

∴S△=底×高÷2=CF×AB÷2.而CF所在△就是等腰RT△,所以在所有斜边相等的RT△中,面积最大的都是等腰RT三角形.

其次解:证明周长最大的还是它

辅助线:延长BC到E,使得CE=AC.延长BC''到D,使得C''D=C''A.连接DE,AD,AE.

∵AC''⊥BDAC⊥BE.C''D=C''A,AC=CE.

∴等腰RT△ACE,等腰RT△ADC''.

∴∠AEB=∠ADB=45

又∵AE,BD为四边形ADEB的对角线.

∴四边形ADEB可以内接在一个圆当中(这其实大家也可以用相似证明).

∴∠EDB=∠EAB.

∵AC垂直平分BE,且AC=CE=CB.

∴等腰RT△AEB.EA⊥AB.

∴∠EDB=∠EAB=90

∴RT△EDB.

∵RT三角形当中斜边恒大于直角边.

∴EB>BD.

又∵EB=AC+CB. BD=AC''+C''B.

∴AC+CB>AC''+C''B.

因为RT△ACB周长=AB+(AC+CB).

RT△AC''B周长=AB+(AC''+C''B).

∴等腰RT△ACB周长>任意RT△AC''B周长.(斜边相等)