当前位置:在线查询网 > 在线百科全书查询 > 核聚变

核聚变_在线百科全书查询


请输入要查询的词条内容:

核聚变


核聚变是指由质量小的原子,主要是指氘或氚,在一定条件下(如超高温和高压),发生原子核互相聚合作用,生成新的质量更重的原子核,并伴随着巨大的能量释放的一种核反应形式。原子核中蕴藏巨大的能量,原子核的变化(从一种原子核变化为另外一种原子核)往往伴随着能量的释放。如果是由重的原子核变化为轻的原子核,叫核裂变,如原子弹爆炸;如果是由轻的原子核变化为重的原子核,叫核聚变,如太阳发光发热的能量来源。



概述


核聚变,即氢原子核(氘和氚)结合成较重的原子核(氦)时放出巨大的能量。核聚变不属于化学变化。

热核反应[1],或原子核的聚变反应,是当前很有前途的新能源。参与核反应的氢原子核,如氢(氕)、氘、氚、锂等从热运动获得必要的动能而引起的聚变反应(参见核聚变)。热核反应是氢弹爆炸的基础,可在瞬间产生大量热能,但目前尚无法加以利用。如能使热核反应在一定约束区域内,根据人们的意图有控制地产生与进行,即可实现受控热核反应。这正是目前在进行试验研究的重大课题。受控热核反应是聚变反应堆的基础。聚变反应堆一旦成功,则可能向人类提供最清洁而又是取之不尽的能源。

核聚变的类型


D(氘)和T(氚)聚变会产生大量的中子,而且携带有大量的能量(14.1),中子对于人体和生物都非常危险。

聚变反应中子的真正麻烦之处在于中子可以跟反应装置的墙壁发生核反应。用一段时间之后就必须更换,很费钱。而且换下来的墙壁可能有放射性(取决于墙壁材料的选择),成了核废料。还有一个不好的因素是氚具有放射性,而且氚也可能跟墙壁反应。

氘氚聚变只能算”第一代”聚变,优点是燃料无比便宜,缺点是有中子。

“第二代”聚变是氘和氦3反应。这个反应本身不产生中子,但其中既然有氘,氘氘反应也会产生中子,可是总量非常非常少。如果第一代电站必须远离闹市区,第二代估计可以直接放在市中心。

“第三代”聚变是让氦3跟氦3反应。这种聚变完全不会产生中子。这个反应堪称终极聚变。

反应条件


核聚变是指由质量小的原子,主要是指氘或氚,在一定条件下

(如超高温和高压),发生原子核互相聚合作用,生成新的质量更重的原子核,并伴随着巨大的能量释放的一种核反应形式。原子核中蕴藏巨大的能量,原子核的变化(从一种原子核变化为另外一种原子核)往往伴随着能量的释放。如果是由重的原子核变化为轻的原子核,叫核裂变,如原子弹爆炸;如果是由轻的原子核变化为重的原子核,叫核聚变,如太阳发光发热的能量来源。

目前人类已经可以实现不受控制的核聚变,如氢弹的爆炸。但是要想能量可被人类有效利用,必须能够合理的控制核聚变的速度和规模,实现持续、平稳的能量输出。科学家正努力研究如何控制核聚变,但是现在看来还有很长的路要走。

可控核聚变方式


目前主要的几种可控核聚变方式:

超声波核聚变

激光约束(惯性约束)核聚变

磁约束核聚变(托卡马克)

典型的聚变反应是

应用


1.可控核聚变的发生条件

产生可控核聚变需要的条件非常苛刻。我们的太阳就是靠核聚变反应来给太阳系带来光和热,其中心温度达到1500万摄氏度,另外还有巨大的压力能使核聚变正常反应,而地球上没办法获得巨大的压力,只能通过提高温度来弥补,不过这样一来温度要到上亿度才行。核聚变如此高的温度没有一种固体物质能够承受,只能靠强大的磁场来约束。此外这么高的温度,核反应点火也成为问题。不过在2010年2月6日,美国利用高能激光实现核聚变点火所需条件。中国也有“神光2”将为我国的核聚变进行点火。

2.核聚变的反应装置

目前,可行性较大的可控核聚变反应装置就是托卡马克装置。

托卡马克是一种利用磁约束来实现受控核聚变的环性容器。它的名字Tokamak 来源于环形(toroidal)、真空室(kamera)、磁(magnit)、线圈(kotushka)。最初是由位于苏联莫斯科的库尔恰托夫研究所的阿齐莫维齐等人在20世纪50年代发明的。

托卡马克的中央是一个环形的真空室,外面缠绕着线圈。在通电的时候托卡马克的内部会产生巨大的螺旋型磁场,将其中的等离子体加热到很高的温度,以达到核聚变的目的。

我国也有两座核聚变实验装置。

3.核聚变的优劣势

优势:

(1).核聚变释放的能量比核裂变更大

(2).无高端核废料

(3).可不对环境构成大的污染,而且反应过程容易控制,核事故风险 极低!

(4).燃料供应充足,地球上重氢有10万亿吨(每1升海水中含30毫克氘,而30毫克氘聚变产生的能量相当于300升汽油)

(5).无法用作核武器材料 也就没有了政治干涉!(后证实,氢弹是根据核聚变反应制造的)

劣势:

反应要求极高,技术要求极高

从理论上看,用核聚变制造武器和提供部分能源,是非常有益的。但目前人类还没有办法,对它们进行较好的利用。

(对于核裂变,由于原料铀的储量不多,政治干涉很大,放射性与危险性大,核裂变的优势无法完全利用。截至2006年,核能(核裂变能)发电占世界总电力约15%。说明了核裂变的应用的规模之大,更能说明优势比核裂变更大的核聚变能源前景更加光明。科学家们估计,到2025年以后,核聚变发电厂才有可能投入商业运营。2050年前后,受控核聚变发电将广泛造福人类。 )

核聚变与恒星发光原理


当四个氢原子在高温下靠得很近时,四个质子会撞到一起时,其中两个会发生衰变,释放出两个反中微子和正电子,变成中子。这两个正电子会与原子核外电子相互湮灭,形成两个光量子;剩下的一共有两个中子、质子和电子,恰好形成一个氦原子。绝大多数恒星都是通过质子的衰变而发出光芒,这在日常生活中也用途很大。

另一定义


比原子弹威力更大的核武器—氢弹,就是利用核聚变来发挥作用的。核聚变的过程与核裂变相反,是几个原子核聚合成一个原子核的过程。只有较轻的原子核才能发生核聚变,比如氢的同位素氘(dao)、氚(chuan)等。核聚变也会放出巨大的能量,而且比核裂变放出的能量更大。太阳内部连续进行着氢聚变成氦过程,它的光和热就是由核聚变产生的。

核聚变能释放出巨大的能量,但目前人们只能在氢弹爆炸的一瞬间实现非受控的人工核聚变。而要利用人工核聚变产生的巨大能量为人类服务,就必须使核聚变在人们的控制下进行,这就是受控核聚变。

实现受控核聚变具有极其诱人的前景。不仅因为核聚变能放出巨大的能量,而且由于核聚变所需的原料——氢的同位素氘可以从海水中提取。经过计算,1升海水中提取出的氘进行核聚变放出的能量相当于300升汽油燃烧释放的能量。全世界的海水几乎是“取之不尽”的,因此受控核聚变的研究成功将使人类摆脱能源危机的困扰。

但是人们现在还不能进行受控核聚变,这主要是因为进行核聚变需要的条件非常苛刻。发生核聚变需要在1亿度的高温下才能进行,因此又叫热核反应。可以想象,没有什么材料能经受得起1亿度的高温。此外还有许多难以想象的困难需要去克服。尽管存在着许多困难,人们经过不断研究已取得了可喜的进展。科学家们设计了许多巧妙的方法,如用强大的磁场来约束反应,用强大的激光来加热原子等。可以预计,人们最终将掌握控制核聚变的方法,让核聚变为人类服务。

利用核能的最终目标是要实现受控核聚变。裂变时靠原子核分裂而释出能量。聚变时则由较轻的原子核聚合成较重的原子核而释出能量。最常见的是由氢的同位素氘(读"刀",又叫重氢)和氚(读"川",又叫超重氢)聚合成较重的原子核如氦而释出能量。 核聚变较之核裂变有两个重大优点。一是地球上蕴藏的核聚变能远比核裂变能丰富得多。据测算,每升海水中含有0.03克氘,所以地球上仅在海水中就有45万亿吨氘。1升海水中所含的氘,经过核聚变可提供相当于300升汽油燃烧后释放出的能量。地球上蕴藏的核聚变能约为蕴藏的可进行核裂变元素所能释出的全部核裂变能的1000万倍,可以说是取之不竭的能源。至于氚,虽然自然界中不存在,但靠中子同锂作用可以产生,而海水中也含有大量锂。

第二个优点是既干净又安全。因为它不会产生污染环境的放射性物质,所以是干净的。同时受控核聚变反应可在稀薄的气体中持续地稳定进行,所以是安全的。

目前实现核聚变已有不少方法。最早的著名方法是"托卡马克"型磁场约束法。它是利用通过强大电流所产生的强大磁场,把等离子体约束在很小范围内以实现上述三个条件。虽然在实验室条件下已接近于成功,但要达到工业应用还差得远。按照目前技术水平,要建立托卡马克型核聚变装置,需要几千亿美元。

另一种实现核聚变的方法是惯性约束法。惯性约束核聚变是把几毫克的氘和氚的混合气体或固体,装入直径约几毫米的小球内。从外面均匀射入激光束或粒子束,球面因吸收能量而向外蒸发,受它的反作用,球面内层向内挤压(反作用力是一种惯性力,靠它使气体约束,所以称为惯性约束),就像喷气飞机气体往后喷而推动飞机前飞一样,小球内气体受挤压而压力升高,并伴随着温度的急剧升高。当温度达到所需要的点火温度(大概需要几十亿度)时,小球内气体便发生爆炸,并产生大量热能。这种爆炸过程时间很短,只有几个皮秒(1皮等于1万亿分之一)。如每秒钟发生三四次这样的爆炸并且连续不断地进行下去,所释放出的能量就相当于百万千瓦级的发电站。

原理上虽然就这么简单,但是现有的激光束或粒子束所能达到的功率,离需要的还差几十倍、甚至几百倍,加上其他种种技术上的问题,使惯性约束核聚变仍是可望而不可及的。

尽管实现受控热核聚变仍有漫长艰难的路程需要我们征服,但其美好前景的巨大诱惑力,正吸引着各国科学家在奋力攀登。

原理


简单的回答:根据爱因斯坦质能方程E=mc^2;

原子核发生聚变时,有一部分质量转化为能量释放出来。

只要微量的质量就可以转化成很大的能量。

两个氢的原子核相碰,可以形成一个原子核并释放出能量,这就是聚变反应,在这种反应中所释放的能量称聚变能。聚变能是核能利用的又一重要途径。

最重要的聚变反应有:

式中D是氘核(重氢)、T是氚核(超重氢)。以上两组反应总的效果是:

即每“烧’掉6个氘核共放出43.24MeV能量,相当于每个核子平均放出3.6MeV。它比n+裂变反应中每个核子平均放出200/236=0.85MeV高4倍。因此聚变能是比裂变能更为巨大的一种核能。

核聚变能利用的燃料是氘(D)和氚。氘在海水中大量存在。海水中大约每600个氢原子中就有一个氘原子,海水中氘的总量约40万亿吨。每升海水中所含的氘完全聚变所释放的聚变能相当于300升汽油燃料的能量。按目前世界消耗的能量计算,海水中氘的聚变能可用几百亿年。氚可以有锂制造。锂主要有锂-6和锂-7两种同位素。锂-6吸收一个热中子后,可以变成氚并放出能量。锂-7要吸收快中子才能变成氚。地球上锂的储量虽比氘少得多,也有两千多亿吨。用它来制造氚,足够用到人类使用氘、氘聚变的年代。因此,核聚变能是一种取之不尽用之不竭的新能源。

在可以预见的地球上人类生存的时间内,水的氘,足以满足人类未来几十亿年对能源的需要。从这个意义上说,地球上的聚变燃料,对于满足未来的需要说来,是无限丰富的,聚变能源的开发,将“一劳永逸”地解决人类的能源需要。六十多年来科学家们不懈的努力,已在这方面为人类展现出美好的前景。

氘是相当丰富的氢同位素,在海洋中每6500个氢原子就有1个氘原子,这意味着海洋是极大量氘的潜在来源。仅在1L海水中就有1.03×10^22个氘原子,就是说每1Km^3海水中氘原子所具有的潜在能量相当于燃烧13600亿桶原油的能量,这个数字约为地球上蕴藏的石油总储量。

要使原子核之间发生聚变,必须使它们接近到飞米级。要达到这个距离,就要使核具有很大的动能,以克服电荷间极大的斥力。要使核具有足够的动能,必须把它们加热到很高的温度(几百万摄氏度以上)。因此,核聚变反应又叫热核反应。原子弹爆炸产生的高温可引起热核反应,氢弹就是这样爆炸的。

受控核聚变是等离子态的原子核在高温下有控制地发生大量原子核聚变的反应,同时释放出能量。氘是最重要的聚变燃料,海洋是氘的潜在来源,一旦能实现以氘为基本燃料的受控核聚变,人们就几乎拥有了取之不尽、用之不竭的能源。氢弹爆炸释放出来的大量聚变能、原子弹爆炸释放出来的大量裂变能,都是不可控制的。在第一颗原子弹爆炸后仅十多年,人们就找到控制裂变反应的办法,并建成了裂变电站。原以为氢弹炸爆后能建成聚变电站,但并不如此简单,即使在地球条件下能发生的聚变反应:

31H+21H—→42He+10n+1.76×10^7eV

也只能在极高的温度(>4000 0000℃)和足够大的碰撞几率条件下,才能大量发生。因此实际可作为能源使用的受控热核聚变反应,必须在产生并加热等离子体到亿万摄氏度高温的同时,还要有效约束这一高温等离子体。这就是近几十年内研究的难题和期望攻克的目标。中国的中科院物理所、中科院等离子物理所、西南物理研究院在实验工程和理论研究各方面都做了许多的工作,也取得了许多重要的进展。

相关分词: 核聚变 核聚 聚变