当前位置:在线查询网 > 在线百科全书查询 > 哈密顿算符

哈密顿算符_在线百科全书查询


请输入要查询的词条内容:

哈密顿算符




一、简介


量子力学中,哈密顿算符(Hamiltonian) H为一个可观测量(observable),对应于系统的的总能量。一如其他所有算符,哈密顿算符的谱为测量系统总能时所有可能结果的集合。如同其他自伴算符(self-adjoint operator),哈密顿算符的谱可以透过谱测度(spectral measure)被分解,成为纯点(pure point)、绝对连续(absolutely continuous)、奇点(singular)三种部分。纯点谱与本征矢量相应,而后者又对应到系统的束缚态(bound states);绝对连续谱则对应到自由态(free states);奇点谱则很有趣地由物理学上不可能的结果所组成。举例来说,考虑有限势阱的情形,其许可了具有离散负能量的束缚态,以及具有连续正能量的自由态。哈密顿算符“▽”因其形象为一倒置的三角形,又称为倒三角算符,或哈密顿算子。

二、算法


哈密顿算符产生了量子态的时间演化。若为在时间 t 的系统状态,其中为约化普朗克常数。此方程为薛定谔方程。(其与哈密顿-雅可比方程具有相同形式,也因为此,H 冠有哈密顿之名。)若给定系统在某一初始时间(t = 0)的状态,我们可以积分得到接下来任何时间的系统状态。其中特别的是,若 H 与时间无关。

首先,“▽”这个东西具有“双重性格”,它既是一个矢量,又是一个微分算子(求导运算),所以哈密顿算符兼具矢量和微分的性质。按照定义;

eg:(图2)

其中x0,y0,z0分别为x,y,z坐标轴的单位矢量。

(图3)表示D的散度(也记为divD),Dx,Dy,Dz分别为D在x,y,z坐标轴上的分量。▽×H表示H的旋度(也可记为rotH或curlH)。

eg:(图4)

但仅仅了解到这一地步,对我们以后简化计算没有任何帮助,当什么时候它的优势就能表现出来呢?那就是▽后的函数不再是一个简单的 f 的时候,比如说,是两个标量函数的乘积 fg,那这时就可以使用▽的微分运算性质了,以梯度运算为例,因为我们不知道grad的运算法则,所以直接做grad ( fg )是不方便的,但将其表示为▽( fg )后,我们利用▽的微分运算性质,就可以很容易的得到▽( fg )=g ▽f + f ▽g ,相当于

图5

矢量运算性质的应用很好理解,这里不再赘述。知道了它的这些特性后,我们就会发现,场论书籍中给出的所有关于▽的运算公式,都有着与微分运算相似的形式,综合这两个特性,我们就很容易记忆这些公式了。实际上,对每一个公式我们都可以从定义出发给出严格的证明,但每次都回归定义是不利于我们使用好▽的特性的,反而使运算复杂化,这也就与我们引入▽算子的初衷相违了。

eg:(图6)

再考虑到▽为微分算符,F应在它后面,因此后项改写为图7

故得图8

相关分词: 密顿 算符