当前位置:在线查询网 > 在线百科全书查询 > 辐射温度计

辐射温度计_在线百科全书查询


请输入要查询的词条内容:

辐射温度计


在测温学中,就温度传感器或温度计与被测温场之间的关系而言.测温方法可以分为两类:接触测温法和非接触测温法。后者也可称为辐射测温法。

辐射测温法包括亮度法(光学高温计)、辐射法(辐射高温计)和比色法(比色温度计)。各类辐射测温方法只能测出对应的光度温度、辐射温度或比色温度。只有对黑体(吸收全部辐射并不反射光的物体)所测温度才是真实温度。如欲测定物体的真实温度,则必须进行材料表面发射率的修正。对于固体表面温度自动测量和控制,可以采用附加的反射镜使与被测表面一起组成黑体空腔。附加辐射的影响能提高被测表面的有效辐射和有效发射系数。利用有效发射系数通过仪表对实测温度进行相应的修正,最终可得到被测表面的真实温度。最为典型的附加反射镜是半球反射镜。至于气体和液体介质真实温度的辐射测量,则可以用插入耐热材料管至一定深度以形成黑体空腔的方法。通过计算求出与介质达到热平衡后的圆筒空腔的有效发射系数。在自动测量和控制中就可以用此值对所测腔底温度(即介质温度)进行修正而得到介质的真实温度。

自1800年Herschel发现红外辐射以来,辐射测温学已有将近200年的发展历史。如果说在19世纪各国科学家主要致力于发现各种热辐射定律,例如克希霍夫定律(1859)、斯蒂芬—玻尔兹曼定律(1879—1884)、普朗克定律(1900)、维恩=位移定律(1894)等,那么20世纪则主要着重于应用。本世纪60年代之前,辐射测温主要用于高温范围(800℃以上),但随着红外技术的发展.它已逐步扩展到中温、常温甚至低温范围。辐射测温技术的另一个重要发展趋势是动态与快速测量。毫秒级、亚微秒级甚至微秒级辐射温度计的相继问吐,标志着这种技术进入了—个崭新的阶段。在这方面.计算机技术的广泛应用作出了重要的贡献。

与接触测温例如电阻测温、热电偶测温不同,辐射测温直接应用基本的辐射定律。它的测量可以与热力学温度联系起来,因此可以直接测量热力学温度。在制订1990年国际温标(ITS—90)的过程中,铝凝固点(630℃)以上的某些数值来自于辐射的测量结果就是一个证明。

辐射测温法的优点是显而易见的。它的测量不干扰被测温场,不影响温场分布,从而具有较高的测量准确度。辐射测温的另一个特点是,在理论上无测量上限,所以它可以测到相当高的温度。此外,其探测器的响应时间短,易于快速与动态测量。在一些特定的条件下,例如核子辐射场,辐射测温可以进行准确而可靠的测量。

辐射测温法的主要缺点在于,一般来说,它不能直接测得被测对象的实际温度。要得到实际温度.需要进行材料发射率的修正,而发射率是一个影响因素相当复杂的参数。这就增加了对测量结果进行处理的难度。另外,由于是非接触,辐射温度计的测量受到中间介质的影响。特别是在工业现场条件下,周围环境比较恶劣,中间介质对测量结果的影响更大。在这方面,温度计波长范围的选择是很重要的。此外.由于辐射测温的相对复杂的原理、温度计的结构也相对复杂,从而其价格较高。这也限制了辐射温度计在某些方面的使用。

相关分词: 辐射 温度计 温度 度计